Generalized least-squares solutions to quasi-linear inverse problems with a priori information.

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Generalized Inverse Preconditioning Methods for Least Squares Problems

iv erative methods to solve least squares problems more efficiently. We especially focused on one kind of preconditioners, in which preconditioners are the approximate generalized inverses of the coefficient matrices of the least squares problems. We proposed two different approaches for how to construct the approximate generalized inverses of the coefficient matrices: one is based on the Minim...

متن کامل

Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion

The aim of physical sciences is to discover the minimal set of parameters which completely describe physical systems and the laws relating the values of these parameters to the results of any set of measurements on the system. A coherent set of such laws is named a physical theory. To the extent that the values of the parameters can only be obtained as a results of measurements, one may equival...

متن کامل

Linear Least Squares Problems

A fundamental task in scientific computing is to estimate parameters in a mathematical model from collected data which are subject to errors. The influence of the errors can be reduced by using a greater number of data than the number of unknowns. If the model is linear, the resulting problem is then to “solve” an in general inconsistent linear system Ax = b, where A ∈ Rm×n and m ≥ n. In other ...

متن کامل

Self-Calibration and Bilinear Inverse Problems via Linear Least Squares

Whenever we use devices to take measurements, calibration is indispensable. While the purpose of calibration is to reduce bias and uncertainty in the measurements, it can be quite difficult, expensive and sometimes even impossible to implement. We study a challenging problem called self-calibration, i.e., the task of designing an algorithm for devices so that the algorithm is able to perform ca...

متن کامل

Convexly constrained linear inverse problems: iterative least-squares and regularization

| In this paper, we consider robust inversion of linear operators with convex constraints. We present an iteration that converges to the minimum norm least squares solution; a stopping rule is shown to regularize the constrained inversion. A constrained Laplace inversion is computed to illustrate the proposed algorithm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics of the Earth

سال: 1982

ISSN: 1884-2305,0022-3743

DOI: 10.4294/jpe1952.30.451